

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Dr. Tahar Moulay University of Saida

Faculty of Technology

Department of Electronics

INSTRUMENTATION

DESIGN AND IMPLEMENTATION OF AN IOT CLOUD
TECHNOLOGY INTO WIRELESS SENSOR NETWORK

APPLICATION

Master Thesis

Submitted by: Ms. Sara RACHEDI

Board of Examiners

Supervisor: Dr.Lotfi MOSTEFAI Dr Tahar Moulay University, Saida

Co-Supervisor: Mr.Merzoug BOUHAMDI Dr Tahar Moulay University, Saida

Member: Dr.Ameur DAHANI Dr Tahar Moulay University, Saida

Member: Mr.Redouane BERBER Dr Tahar Moulay University, Saida

September 2020

2

Dedication

This Work Is Dedicated

To my beloved mother, to my father whose support, encouragement and constant love has

sustained me throughout life.

 To my brothers and sisters;

To all my relatives and friends,

To the best things I gained from the field,

And finally to you, dearest reader.

3

Acknowledgments

This thesis marks an end and a beginning of an arduous but insightful journey in scientific

research. It would have never been completed without constant support and encouragement

from my supervisor, Dr. Lotfi MOSTFAI & Mr. Merzoug BOUHAMDI. Their wisdom,

patience, stimulating suggestions and encouragement gave me the energy to complete what at

times seemed to be an unattainable goal. I would like to thank them for their invaluable advice

and guidance throughout the course of my studies.

My sincere thanks and gratitude go to the members of the board of examiners for accepting to

read and evaluate this work.

I must acknowledge a special debt of gratitude to my friend, the future Dr, Apolytos who

never doubted my ability to succeed and who supported me to overcome a lot of difficulties

while investigating.

I want to express my sincere appreciation to my GDG community for helping me conducting

some exclusive researches and for having access to all the resources. I am indebted to them

for providing me with all what it takes to experiment and improve, to confirm that GDGers

are able to develop their competencies provided that they are motivated and well trained.

My deepest thanks go to all my friends who have constantly given me support and strength to

continue this research and are extended to my Asterism family, my colleagues and classmates.

I am also grateful to kamar who gave me a hand in computing.

Finally, I would like to express my great pride to my beloved parents, my brothers and sisters

for their endless love, sacrifice and support in order to finish this study.

4

SUMMARY

Dedication .. 2

Acknowledgments .. 3

Abstract .. 10

GENERAL INTRODUCTION .. 11

1. Background of the Study .. 12

2. Statement of the problem .. 12

3. Design Issues and Challenges ... 12

3.1 Sensor Issues .. 13

1) Power Management: ... 13

2) Scalability: ... 13

3) Network Connectivity and Protocols: ... 13

4) Scheduling: .. 13

3.2 Cloud Issues ... 14

1) Reliability: .. 14

2) Data Backup: ... 14

3) Privacy: .. 14

4) Security: ... 14

5) Ownership: .. 14

6) Availability and Performance: ... 14

7) Legal: .. 14

4. Aims of the Study and Contribution .. 15

5. Structure of the Work ... 15

6. Conclusion .. 15

CHAPTER ONE : RELATED WORK ... 16

1. Introduction ... 17

2. Related work .. 18

3. Service Creation and Innovation ... 19

3.1. Existing Sensor-Cloud Applications. .. 19

3.1.1. Nimbits. .. 19

3.1.2. Pachube Platform. ... 20

3.1.3. IDigi. ... 20

3.1.4. ThingSpeak. ... 20

3.2. Emerging Sensor-Cloud Applications. ... 21

5

3.2.1. Ubiquitous Healthcare Monitoring. ... 21

3.2.2. Environmental Monitoring for Emergency/Disaster Detection. 22

3.2.3. Telematics. .. 22

3.2.4. Google Health. ... 22

3.2.5. Microsoft HealthVault. ... 22

3.2.6. Agriculture and Irrigation Control (Field Server Sensors). .. 22

3.2.7. Earth Observation. .. 23

3.2.8. Transportation and Vehicular Traffic Applications. ... 23

3.2.9. Tunnel Monitoring. ... 23

3.2.10. Wildlife Monitoring. .. 23

4. Description of proposed architecture .. 24

5. Conclusion:... 25

CHAPTER TWO : THE HARDWARE SETTINGS ... 26

1. Introduction: .. 27

2. System Architecture : .. 28

2.2 Multiple Low-Cost Sensors : .. 28

2.2.1 The DHT-22 Sensor ... 29

2.2.2 Rain drop Sensor Module ... 30

2.3 Raspberry Pi .. 34

3. The Actuator .. 35

4. Conclusion .. 38

CHAPTER THREE : THE SOFTWARE DEVELOPMENT ... 39

1. Introduction ... 40

2. Information Processing Software ... 41

Communication and Sensor Layers in Raspberry Pi ... 41

Connecting Sensor Network to Cloud Service .. 43

Firebase .. 43

Step 1: Creating a Firebase project ... 43

Managing a Firebase project .. 45

Tools to manage the project Html, css, javascript & Node Js ... 46

Adding Firebase to JavaScript app.. 47

Adding Firebase SDKs and initializing Firebase .. 47

Learning about the Firebase config object .. 48

Run a local web server for development ... 50

6

3. Implementation Results and Discussion .. 51

Limitations of the Study .. 52

4. Conclusion ... 53

CONCLUSIONS .. 54

References .. 56

7

List of Figures

CHAPTER ONE

Figure.1: Diagram of the architecture ... 14

CHAPTER TWO : THE HARDWARE SETTING

Figure.2: The Experiment RPI Weather Station …………………………..…….….............. 19

Figure.3: The DHT22 Sensor……...……………………………………………………...…. 20

Figure.4: The Rain Drop Sensor………………………………………………………..…… 21

Figure.5: The Rain Drop module.…………………………………………...............………. 21

Figure.6: The Rain board Sensor………………………………………..................…………22

Figure.7: The circuit diagram of a raindrop sensor………………..................……………… 23

Figure.8: The circuit diagram of a raindrop sensor………………..................……………… 24

Figure.9: The Raspberry PI board…………………………………….................……………25

Figure.10: Connecting the LED with the circuit………………................………………….. 26

Figure.11: The LED circuit…………………………………................……………………..27

Figure.12: The Circuit…………………………………………………………...…………... 28

CHAPTER THREE : THE SOFTWARE DEVELOPMENT

Figure.13: Software Architecture………………………………………………….…............... 30

Figure.14 Firebase Console………...………………..………………………………............. 34

Figure.15: Firebase Project ……………..………………...…………................…..………...35

Figure.16:Application Interface …………………………………………..............…...........36

8

List of Tables

CHAPTER TWO : THE HARDWARE SETTING

1. Table.1: Weather sensors.................................. …………………….….............. 19

2. Table.2: Pin Configuration of DHT22 sensor…………………………..………. 21

3. Table.3: Pin Configuration of Rain drop sensor………………………………… 21

9

 نبذة مختصرة

 فضلاً عِ الاّزقبه ٍِ اىعبىٌ اىزْبظشٛ إىٚ ّظٞشٓ اىشقَٜ ٍِٗ اىسي٘ه اىزنْ٘ى٘خٞخ،ىقذ لازظْب ٍؤخشًا اىعذٝذ ٍِ اىث٘ساد

عيٚ ٗخٔ اىخص٘ص ، أدٙ ظٖ٘س أخٖضح الإسعبه ٗالاعزقجبه . اىغينٞخ اىَشمضٝخ إىٚ الأّظَخ اىلاعينٞخ اىَ٘صعخ ٗاىَْزششح

راد اىطبقخ اىَْخفضخ ٗاىَٞغ٘سح اىزنيفخ ، إىٚ خبّت رط٘ٝش ٍنذعبد قٞبعٞخ صغٞشح اىسدٌ ٍٗفز٘زخ ، إىٚ إّشبء شجنبد

اىٖذف اىطَ٘ذ زبىًٞب . ، رٌ اعزَبدٕب فٜ اىغبىت ىزطجٞقبد اىَشاقجخ اىَْضىٞخ ٗاىَنزجٞخ ٗاىصْبعٞخ (WSN) اعزشعبس لاعينٞخ

إُ . ٕ٘ أخز عْٞبد ٗخَع ٗرسيٞو مو قطعخ ٍِ اىجٞبّبد ٍِ ز٘ىْب ىزسغِٞ مفبءح الإّزبج ٗضَبُ الاعزٖلاك الأٍثو ىيَ٘اسد

، أٛ ر٘صٞو الأشٞبء اىٍٞ٘ٞخ ٍثو اىَغزشعشاد ٗاىَشغلاد ثبلإّزشّذ زٞث ٝزٌ سثظ الأخٖضح ٍعًب (IoT) "إّزشّذ الأشٞبء"

قذ ٝزٌ . ثزمبء ٍَب ٝزٞر أشنبلًا خذٝذح ٍِ الارصبه ثِٞ الأشٞبء ٗاىجشش ، ٗثِٞ الأشٞبء ّفغٖب ، ٕ٘ اىسو الأعبعٜ ىٖزا طيت

/ ، أٛ أطش عَو " اىغسبثخ"اىزعبٍو ٍع اىنٌ اىٖبئو ٍِ اىجٞبّبد اىزٜ ٝزٌ إّشبؤٕب ّزٞدخ ىزىل ثشنو ٍشثر ثبعزخذاً خذٍبد

ٍشّخ ٗقبثيخ Iot ٍِ خلاه ٕزا اىعَو ، ّٖذف إىٚ اقزشاذ ثْٞخ. ثشٍدٞبد ٍشّخ ٗق٘ٝخ قبدسح عيٚ رقذٌٝ اىس٘عجخ مخذٍخ

 .ىيز٘عٞع ىذٍح اىخذٍبد اىغسبثٞخ فٜ شجنبد الاعزشعبس اىلاعينٞخ

10

Abstract

Recently, we have witnessed several technological revolutions, as well as the transition from

the analog world into its digital counterpart and from centralized wired solutions to distributed

and pervasive wireless systems. Especially, the appearance of affordable and low-power

transceivers, beside the development of compact-size and open standard stacks, have created

potential Wireless Sensor Networks (WSNs), mostly adopted for home, office and industrial

monitoring applications. Currently, the ambitious aim is to sample, collect and analyze every

piece of data around us to improve production efficiency and ensure optimal resource

consumption. The ―Internet of Things‖ (IoT), i.e. connecting everyday objects like sensors

and actuators to the Internet where the devices are intelligently linked together enabling new

forms of communication between things and human beings, and between things themselves, is

the key answer to this request. The huge amount of data being consequently generated may be

profitably handled using ―cloud‖ services, i.e. flexible and powerful hardware/software

frameworks capable to deliver computing as a service. Within this work we aim at suggesting

an extensible and flexible Iot architecture for integrating Cloud services in Wireless Sensor

Networks.

11

GENERAL INTRODUCTION

12

1. Background of the Study

The ―Internet of Things‖ (IoT), is the ubiquity of the Internet by integrating all objects for

interaction via embedded systems, leading to a highly distributed network of devices

communicating with people as well as other devices. Building IoTs has advanced

considerably within the last few years since it has added a new dimension to the world of

information and communication technologies. Now anyone, from almost anytime and

anyplace can have connectivity for anything and it is expected that these connections will

extend and make a wholly advanced dynamic network of IoTs. The development of the Iot

will revolutionize a varety of sectors, from wireless sensors to nanotechnology.

In fact, one of the important elements in the Iot paradigm is wireless sensor networks

(WSNs). WSNs consist of sensing nodes with embedded CPUs, sensors which are used to

monitor environmental conditions such as temperature, pressure, humidity.. Briefly, the

purpose of the WSN is to provide sensing services to the users. Since, the number of users of

the Internet is growing therefore; it is wise to provide WSN services to this ever increasing

community.

Cloud computing is a flexible, powerful and cost-effective framework in providing real-time

data to users at anytime, anywhere with immense coverage and quality. The Cloud inclouds of

hardware, networks, services, storage, and interfaces that enable the delivery of computing as

a service. Additionally, it’s possible to add the data obtained from the wireless sensor nodes to

the Web services. By connecting, evaluating and linking these sensor networks, information

conclusions can be made in real-time, trends can be predicted and hazardous situations can be

avoided.

2. Statement of the problem

These days, Iot based projects require an important amount of informations and data that need

to be stored and analyzed frequently to guarantee acceptable performances. This kind of tasks

is hard be done manually and must be automated to meet current standards which involves

knowledge of deploying, designing, and maintaining the infrastructure of data streaming.

In addition to this, it takes a lot of time dealing with networking issues, including making sure

everything still works when it goes offline, wondering if it has the right security and privacy

while providing a scalable service no matter how many millions of users it might have, and

without affecting the flexibility of the whole system.

3. Design Issues and Challenges

Most of the issues and challenges in the design of Sensor Clouds design issues and challenges

arise due to the inherent limitations of sensor devices such as limited processor performance,

small storage capacity, limited battery power, and unreliable low-bandwidth wireless

communication and some issue arise due issue de-facto standard of cloud such as reliability,

back up, privacy, security ownership etc.

13

3.1 Sensor Issues

1) Power Management:

Power management is a major concern as sensor nodes do not have fixed power sources and

relies on limited battery power. Sensor applications executing on these devices have to make

tradeoffs between sensor operation and conserving battery life. The sensor nodes should

provide adaptive power management facilities that can be accessed by the applications. From

the SensorCloud perspective, the availability of sensor nodes is not only dependent on their

load, but also on their power consumption. Thus, the Sensor Cloud’s resource management

component has to account for power consumption.

 2) Scalability:

Scalability is the ability to add sensor resources to a Sensor-Cloud to increase the capacity of

sensor data collection, without substantial changes to its software architecture. The Sensor-

Cloud architecture should allow multiple wireless sensor networks, possibly owned by

different virtual organizations, to be easily integrated with compute and data cloud resources.

This would enable an application to access sensor resources across increasing number of

heterogeneous wireless sensor networks.

 3) Network Connectivity and Protocols:

 The network connections are usually fast and reasonably reliable in cloud. On the other hand,

the sensor nodes in Sensor Clouds are connected via wireless ad hoc networks which are low-

bandwidth, high-latency, and unreliable. The network connectivity of sensor nodes is dynamic

in nature, and it might be irregular and vulnerable to faults due to noise and signal degradation

caused by environmental factors. The Sensor-Cloud has to gracefully handle unexpected

network disconnections or prolonged periods of disconnection. Thus, efficient techniques to

interface sensor network protocols with cloud networking protocols are necessary.

 4) Scheduling:

 In wireless sensor networks, scheduling of sensor nodes is often performed to facilitate power

management and sensor resource management. Researchers have developed algorithms to

schedule the radio communication of active sensor nodes, and to turn off the radio links of

idle nodes to conserve power. Similarly, for applications like target tracking, sensor

management algorithms selectively turn off sensor nodes that are located far away from the

target, while ` to improve the availability of sensor nodes are necessary. Sensor Clouds should

support job and service migration, so that a job can be migrated from a sensor node that is

running out of power or has failing hardware to another node.

14

3.2 Cloud Issues

1) Reliability:

Stability of the data storage system is of important consideration in clouds. Generally, people

worry about whether a cloud service provider is financially stable and whether their data

storage system is trustworthy. Most cloud providers attempt to mollify this concern by using

redundant storage techniques, but it is still possible that a service could crash or go out of

business, leaving users with limited or no access to their data.

 2) Data Backup:

 Cloud providers employ redundant servers and routine data backup processes, but some

customers worry about being able to control their own back-ups. Many providers are now

offering data dumps onto media or allowing users to back up their data through regular

downloads.

3) Privacy:

The Cloud model has been criticized by privacy advocates for the greater ease in which the

companies hosting the Cloud services control and monitor communication and data stored

between the user and the host company lawfully or unlawfully. There have been efforts to

"harmonize" the legal environment by deploying local infrastructure and allowing customers

to select "availability zones.‖

4) Security:

Cloud service providers employ data storage and transmission encryption, user authentication,

and authorization. Many clients worry about the vulnerability of remote data to criminals and

hackers. Cloud providers are enormously sensitive to this issue and apply substantial

resources to mitigate this problem.

5) Ownership:

Once data has been relegated to the cloud, some worry about losing their rights or being

unable to protect the rights of their customers. Many cloud providers address this issue with

well-skilled user-sided agreements. According to the agreement, users would be wise to seek

advice from their favorite legal representative.

6) Availability and Performance:

 Business organizations are worried about acceptable levels of availability and performance of

applications hosted in the cloud.

 7) Legal:

There are certain points of concern for a cloud provider and a client receiving the service like

location of the cloud provider, location of infrastructure, physical location of the data and

outsourcing of the cloud provider’s services etc.

15

4. Aims of the Study and Contribution

In this work, we present the design, development and integration of an extensible architecture

for WSN with the Cloud services, where the collected data from the sensors are processed,

stored and viewed in real time.

We have used Cloud Firestore from Firebase and Google Cloud Platform, it’s a flexible,

scalable database for mobile, web, and server. And this solution can be integrated into other

application domains like smart homes, e-health, care services, or even vehicular area

networks.

For proof of concept, we have created a web and mobile app, which enables data visualization

from any device and anywhere.

5. Structure of the Work

The remaining of this work is organized as follows:

Chapter 1, discusses briefly the related work and describes the proposed architecture while

Chapter 2 outlines the hardware design. Chapter 3 discusses the software implementation.

Chapter 4 presents the implementation results and finally, some conclusions are presented.

6. Conclusion

Sensor networks is an emerging area and there are many research issues pertaining to sensor

networks such as energy management, coverage, localization, medium access control, routing

and transport, security etc. Research in cloud computing is also in fantasy stage. It also has a

number of research challenges such as efficient resource allocation, high resource utilization

and security etc. Apart from the afore-mentioned research issues in sensor networks and cloud

computing, sensor-cloud computing gives rise to additional research challenges, especially

when it is used in missioncritical situations. These research challenges are: web services and

service discovery which work across both sensor networks and the cloud, interconnection and

networking, coordinated quality of services etc.

The goal is to integrate it with WSN, as the core of data management system, which represent

a challenge itself when it comes to choosing the right provider, the right service and to

configure it properly.

In order to respond correctly to such severe constraints, ―Firebase services‖ from Google

cloud platform are proposed.

16

CHAPTER ONE : RELATED WORK

17

1. Introduction

The Internet of Things (Iots) offers potentialities which make it possible for the development

of so many applications. Some of the mentioned application domains are transportation,

healthcare, smart environment, personal and social domains. Each of the domains embody its

own unique characteristics in terms of real-time processing, volume of data collection and

storage, identification and authentication, and security considerations. For example, real-time

processing is of utmost importance within the transportation industry, while identification and

authentication are important aspects in healthcare.

Cloud services, with its virtually unlimited resources of computing power, storage space, and

networking capabilities, is well appropriate for scaling in the IoT world.

As of late, an extensive measure of research in the field of the probability of integrating cloud

computing with WSNs has been explored. This paradigm has been proposed as a feasible

mechanism to accomplish the best use of a wireless sensor infraconfiguration and allows data

sharing among multiple applications.

18

2. Related work

Wireless sensor platforms have been deployed in a wide range number of applications, from

health care and medical such as Alarm-Net [1], or CodeBlue [2] to environmental monitoring

[3-5]. The architecture of these systems has been designed in a very ad hoc fashion and is not

flexible to adapt to other applications or scenarios while the core problem is the same, remote

monitoring using sensor networks. Throughout the last few years, many researchers have

investigated on ways to connect wireless sensor networks to the Cloud [6]. Authors in [7-11]

have presented Internet protocols for connecting wireless sensor networks to the Internet but

no real implementations have been shown. Much of the previous work has been on theoretical

aspects of system architecture rather than actual deployment and testing of wireless sensor

networks with the Clouds. Use of Web services to connect sensor networks with external

networks have also been suggested by researchers in [12, 13].

Wireless sensor networks (WSN) [13] have a great role, enabling the mitigation of many of

the problems in traditional monitoring systems. They provide a continuous and distributed

operation, which is very important, achieving the necessary increase in the spatial density of

the measurements. Furthermore, in this way, contaminant measurement systems with low-

energy consumption, complexity, and cost are achieved.

From the other side, Cloud can reach out to the ―real world‖ through the IoT [14, 15].

Although it is a new infrastructure, this type of application has already emerged in different

areas such as health [16, 17], smart cities [18, 19], or environmental monitoring [20–22].

In addition, following the merger of Cloud computing and IoT, some platforms that offer

services to store and/or process information from the IoT in the cloud have emerged [23].

Among them are open source projects, such as OpenIoT [24], or commercial clouds offered

by service providers such as Xively [25], ThingSpeak [26], CloudPlugs [27], DeviceCloud

[28], Thinkingthings [29], SensorCloud [30], AWS IoT [31], or Google Cloud IoT [32].

19

3. Service Creation and Innovation

Capabilities Sensors are very limited and specific to their applications or services when they

are linked to a typical sensor network. Therefore, the numbers of organizations that can

provide the sensor services are very limited. However, when the services of sensors move

onto the cloud, it is possible to include them to realize a variety of applications [33,37].

A number of services can be provided to the users for different applications such as health

applications, environmental monitoring, industrial tasks (e.g., refining), surveillance, senior

residents monitoring, or even the applications that monitor the vibration in buildings during

an earthquake.

In the Sensor-Cloud infrastructure, the sensors and service templates are constructed as

catalog menu service on the cloud, and the requesters can create new sensor services with the

existing sensors in these service instances. For example, service requester can create a sensor

service to analyze the impact of earthquake to each floor or room of the rehabilitation center

or hospital, and at the same time it can also create sensor services to support older residents

with the same set of sensors (virtualized sensors).This service will then help the caregiver to

shift the older adults one by one into a safe place. Using the identical sensor services for

healthcare, another service requester can create dissimilar sensor service to track the patient’s

medicine intake and then to analyze the effectiveness of pills through the use of some selected

healthcare sensors. Thus, the service requesters can be provided with new services using the

same set of sensors on cloud service platforms. This will reduce the cost for resource usage

and could have numerous elastic merits to it. In this section, several existing Sensor-Cloud

applications are described.

 3.1. Existing Sensor-Cloud Applications.

 There exist a number of services based on Sensor-Cloud infrastructure to store and process

the sensor-based information. Few of them are described briefly as below.

 3.1.1. Nimbits.

Nimbit [38] is a free and social service that is used to record and share sensor data on cloud. It

is a cloud-based data processing service and is an open-source platform for the IoT (Internet

of Things). We can feed the versatile numeric, text-based, JSON, GPS, or XML values by

creating a data point in the cloud. The data points can be connected to Scalable Vector

Graphic (SVG) process control, spreadsheets, diagrams, websites, and more. Data points can

also be configured to generate alerts data-relay to social networks and to perform calculations.

Nimbits also provide an alert management mechanism, data compression mechanism, and

data calculation on received sensor data by employing some simple mathematical formulas.

20

3.1.2. Pachube Platform.

 Pachube [39] is one of the first online database service providers, which allows us to connect

sensor data to the web. It is a real-time cloud-based platform for IoT with a scalable

infrastructure that enables us to configure IoT products and services, store, share, and

discover realtime energy, environment, and healthcare sensor data from devices and buildings

around us. Pachube has a very interactive website for managing the sensor data and an open

easily-accessible API. Pachube system provides free usage and has several numbers of

interfaces for producing a sensor or mobile-based applications for managing the sensor data

within a cloud framework anytime.

3.1.3. IDigi.

iDigi [40] is a machine-to-machine (M2M) platform as a service PaaS that minimizes the

barriers to build scalable, secure, and cost-effective solutions, which can bind the enterprise

applications and device assets together. iDigi eases the connectivity of remote assets devices

and provides all the tools to manage, store, connect, and move the information across the

enterprise irrespective of its reache. To simplify the remote device connectivity and

integration, it uses connector software called iDigi Dia. Regardless of the network location,

iDigi platform manages communication between remote device assets and enterprise

applications.

3.1.4. ThingSpeak.

ThingSpeak [26] is another open source IoT application and has an open API to store and

retrieve data from device assets or things via LAN or using HTTP over the Internet. With this

platform, location tracking applications, sensor logging applications, and social network of

device assets with proper update of its status can be created. ThingSpeak allows numeric data

processing like averaging, timescaling, rounding, median, summing, and so forth to store and

retrieve the numeric and alphanumeric data.ThingSpeak application features a JavaScript-

based charts, read/write API key management, and a time-zone management. Although the

above services are able to visualize the sensor data and sensor-driven information, they are

lacking secure access to data and interface availability for linking the external or mobile

applications for further processing. It means that most of these aforementioned projects do not

address the issues of data management and interoperability issues caused by heterogeneous

data resources found in the present modern environmental tracking or electronic healthcare

systems. But introducing these aforementioned works with Cloud computing infrastructure

may overcome the issues related to heterogeneous data access and data management

functionality [41].

21

3.2. Emerging Sensor-Cloud Applications.

 There are many other applications that are emerging based on the SensorCloud infrastructure,

which can be summarized as follows.

3.2.1. Ubiquitous Healthcare Monitoring.

 Sensor-Clouds can be used for health monitoring by using a number of easily available and

most often wearable sensors like accelerometer sensors, proximity, ambient light and

temperature sensors, and so forth to collect patient’s health-related data for tracking sleep

activity pattern, blood sugar, body temperature, and other respiratory conditions [42]. These

wearable sensor devices must have support of BWI (Bluetooth’s wireless interface), UWB

(Ultra wideband), and so forth interface for streaming of data and are connected wirelessly to

any smartphone through this interface. These smart phone devices pretend to function like a

gateway between the remote server and sensor through the Internet, maybe GPRS/Wi-Fi, or

other sort of gateways.

To transform this system into services-based structure, web-services-based interfaces are used

by smart phone device to connect to the server [43]. The system prototype should have made

to be robust, mobile, and scalable. Robust in the sense means that it should recover itself from

circumstances, which may lack connectivity issues due to power (i.e., battery), failure, or

gateway cutoff to patient’s wearable devices [44]. Mobile in the sense means that it should be

capable of tracking signals into heterogeneous environments; that is, it must catch the signals

irrespective of whether the patient went outside or still resided into the hospital/building. It

should be scalable so that it could be deployed easily for several users concurrently without

affecting the performance metrics.

Finally, such prototype system should be retargetable and extensible in nature. Retargetable

refers to the fact that it can handle various displays with distinct form factors and screen

resolution. It means that the same health applications can be displayed to any smartphone

display like PDA (personal digital assistant) or to a bigger console device in a hospital where

doctors, helpers, or nurses may track the acquired data or processed information from

distance. The extensibility aspect requires that if any newer sensing devices are introduced

into the system for acquiring the patient’s healthbased information, the system should

function efficiently and conveniently without affecting backend server of the services [45].

In this platform, context awareness can be achieved that can direct us to derive a better level

of emergency services to the patient. The information regarding recent operational

laboratories, missing doses of pills, number of handicaps, and other situations would be

helpful in health monitoring. The system should not adhere to any changes made into the

operating system or intermediate components of sensing devices and is designed in such a

way that it would cause minimal disturbance to services provided to existing end users of the

system.

22

In this scenario, several numbers of sensors pick up the patient data, and these accumulated

data are uploaded to a server on cloud. If any noise data is found, they are filtered using some

filtering mechanism on a server. The doctors/health employees, nurses, and others can then

access the patients’ data on cloud through a web service portal after being

authenticated/permitted by the patient.

3.2.2. Environmental Monitoring for Emergency/Disaster Detection.

In environmental applications, it is possible to detect the earthquake and volcano explosion

before its eruption by continuously monitoring them through the use of several numbers of

different sensors like strain, temperature, light, image, sound, acceleration, barometer sensors,

and so forth through the use of wireless sensor networks [46]. Through the Sensor-Cloud

infrastructure, the sensor instances engaged in environmental monitoring can be used in

parallel with several other sensor instances, for example, by the healthcare department to

avoid any future casualty, or with crop harvesting application services to avoid the damage

caused by bad weather condition.

3.2.3. Telematics.

Sensor-Clouds can be used for telematics, meant to deploy the long distance transmission of

our computerized or information to a system in continuum. It enables the smooth

communication between system and devices without any intervention.

3.2.4. Google Health.

It is a centralization service of Google that provides personal health information [47] and

serves as cloud health data storages. Google users are allowed to monitor their health records

by logging into their accounts at collaborated cloud health service providers into the Google

health system. However, in a recent declaration Google has announced the discontinuation of

this health service.

3.2.5. Microsoft HealthVault.

This cloud platform is developed by Microsoft to store and maintain health and fitnessrelated

information [48]. HealthVault helps users to store, gather, and share their health relevant

information and its data can be acquired from several pharmacies, cloud providers, health

employees, health labs, equipment, and from the users itself.

3.2.6. Agriculture and Irrigation Control (Field Server Sensors).

 Sensor-Cloud can be used in the field of agriculture to monitor the crop fields in order to

upkeep it. For this, a field server is developed that comprises of a camera sensors, air sensor,

temperature sensor, CO2 concentration sensor, soil moisture and temperature sensors, and so

forth. These sensors continuously upload the field data via Wi-Fi access point to the field

owner to track the health of their crops [49]. This can also be used for harvesting.

23

3.2.7. Earth Observation.

 A sensor grid is developed for data gathering from several GPS stations, to process, analyze,

manage, and visualize the GPS data [50].This GPS data would then be uploaded onto the

cloud for efficient monitoring, early warning, and decision-making capability for critical

situations like the volcanic eruptions, earthquakes, tsunamis, cyclones, and so forth to the

users all around the world.

3.2.8. Transportation and Vehicular Traffic Applications.

 Sensor-Cloud can be used to provide an efficient, stable, equilibrium, and sustainable

tracking system. Earlier existing technologies like GPS navigation can only track the status

and current location of vehicle. On the other hand, when vehicle monitoring is implemented

using cloud computing, it is possible to incorporate centralized web service, GPS and GSM

enabled devices, and embedded device with sensors [51], which will provide the following

benefits:

(i) to identify the current name of the location, (ii) to predict the time of arrival,

(iii) to find status of driver via alcohol breath sensor , (iv) to find the total distance covered,

(v) to track the level of fuel.

All the data fetched are stored onto some centralized server that will be resided into the cloud.

The vehicle owner can access this data on cloud via web portal and can retrieve all data on

cloud in real time to visualize the vehicle information.

3.2.9. Tunnel Monitoring.

 WSN can be used to implement the distributed sensing of light levels inside the tunnel and

underbridges to provide necessary input information for adapting light functionality. This

tunnel information can be put onto the cloud and is used to monitor the light intensity in real

time to avoid the automobile users (drivers) casualty and to save the energy spent

unnecessarily for lightening throughout the day.

3.2.10. Wildlife Monitoring.

 Sensor-Cloud can also be used for tracking the wildlife sanctuaries, forests, and so forth to

regularly monitor the endangered species in real time.

However, in this work, we have chosen to use our own cloud, since it gives us the advantage

of customizing it according to our application requirements, so in order to address the above

mentioned issues of deployment and testing of wireless sensor networks with the Clouds, we

designed and implemented a flexible architecture for integrating WSN to Cloud using

Firebase from Google Cloud Platform, which can be directly integrated into other

applications.

The architecture presented in this work can be customized in different ways in order to

accommodate different application scenarios with minimum redesign.

24

4. Description of proposed architecture

The architecture of the proposed system is divided into three parts: Sensor part, the

Coordinator Layer and the Cloud Layer.

Figure.1 : Diagram of the architecture

1) The Sensor Layer consists of a wireless sensor network that can be roughly defined as the

ensemble of spatially distributed, autonomous sensor that cooperate to monitor physical or

environmental quantities of interest (temperature, humidity and rain drop) transducing the

physical quantity of interest into an electric signal., such a large number of such wireless

sensor nodes possibly interacting one with each other constitute a sensor network.

Formally speaking, different sensors are adopted, such as temperature, humidity and rain drop

sensor. capable to simultaneously monitor environmental conditions at different locations;

locally extracted information can be consequently forwarder to a peculiar sink node for

further processing.

2)The Coordination Layer is responsible for the management of the data received from the

sensor network. It temporarily stores the gathered data and sends it to the Supervision layer at

predefined intervals. This base station which comprises of Raspberry pi (connected to the

Internet and powered using an AC adaptor) has some computational resources and gathers

data from wireless sensors using the communication protocols and sends this data to Cloud

based sensor data platforms.

3) Finally, the Supervision Layer, the cloud accommodates the base station with Firebase to

connect and publish the sensor data on the Internet. This layer stores the sensor data in a

database and also offers a Web interface for the end users to manage the sensor data and

generate statistics.

According to its implementation, we have used Firebase from GCP Services which provides

many features to publish and access the sensor data and offers a graphical interface for real-

time monitoring of systems to retrieve the sensor values using any device type and timestamp.

Alerts can also be automatically generated to notify the user each time if the desired event has

been sensed by the domain rules programmed in the base station.

Weather
Sensors (Layer1)

Raspberry Pi
(Layer2)

Cloud

(Layer3)

25

5. Conclusion:

 Once highlighted some applications on this subject, features and advantages of both WSNs

and cloud computing, it is quite evident that these two paradigms can be mixed together to

allow for easily sharing and analyzing real-time sensor data on-the-fly [6].

This mixture also allowed "us" too, for providing sensor data or sensor event as a service over

the Internet, so that sensor data can be easily analyzed not only locally, but also from

everywhere around the world.

We merged these two technologies to usefully exploite a large number of different

applications, In the following sections, an application of cloud sensing for monitoring is

developing on :

Weather Forecasting; data collected by environmental sensors represent an example of the so

called ―bigdata‖ issue, that cannot be easily maintained using the traditional database

approaches [14], but could be profitably solved by low-cost large computational power of the

cloud.

26

CHAPTER TWO : THE HARDWARE SETTINGS

27

1. Introduction:

This chapter outlines the design and the process of realizing the system and the Hardware

implementation of what was stated in the previous chapters.

28

2. System Architecture :

As a proof of concept, here is a project designed and created to see changes in weather that

gets data from weather sensors using Raspberry PI. And loads it into the cloud, using

Firebase.

Figure.2: The Experiment « RPI Weather Station ».

2.2 Multiple Low-Cost Sensors :

In order to collect data and sense the physical quantity, like capturing the rapid climate

changes, there is no doubt that an integrated sensor system must contain comprehensive

sensors so that we can know the exact state in a localized area. The sensors need to be able to

measure temperature, humidity, and the rain drop.

Sensor type Sensed physical quantity

Cost (DZ)

DHT22 Temperature & Humidity

600

Rain Sensor Rain Drop

700

Table.1 : Weather sensors.

29

2.2.1 The DHT-22 Sensor

Figure.3: The DHT22 Sensor.

The DHT-22 is a digital-output relative humidity and temperature sensor. It uses a capacitive

humidity sensor and a thermistor to measure the surrounding air, and spits out a digital signal

on the data pin.

The DHT22 is a basic, low-cost digital temperature and humidity sensor. It uses a capacitive

humidity sensor and a thermistor to measure the surrounding air, and spits out a digital signal

on the data pin (no analog input pins needed).

Technical details:

 Power: 3-5V

 Max Current: 2.5mA

 Humidity: 0-100%, 2-5% accuracy

 Temperature: -40 to 80°C, ±0.5°C accuracy

Pin Configuration of DHT22 Sensor:

S.No NAME FUNCTION

1 VCC (the first pin on the left) Connects supply voltage- 5V

2 GND(the second pin) Connected to ground(P6).

3 D0 (The Digital data pin) D0 outputGPIO 4 (P7)

Table.2 : Configuration of DHT22.

30

2.2.2 Rain drop Sensor Module

Figure.4: The Rain Drop Sensor.

Raindrop Sensor is a tool used for sensing rain. It consists of two modules, a rain board that

detects the rain and a control module, which compares the analog value, and converts it to a

digital value. The raindrop sensors can be used in the automobile sector to control the

windshield wipers automatically, in the agriculture sector to sense rain and it is also used in

automation systems.

Raindrop Sensor Features:

 Working voltage 5V

 Output format: Digital switching output (0 and 1), and analog voltage output AO

 Potentiometer adjust the sensitivity

 Comparator output signal clean waveform is good, driving ability, over 15mA

 Anti-oxidation, anti-conductivity, with long use time

 Easy installation

 Small board PCB size: 3.2cm x 1.4cm

31

Pin Configuration of Rain Sensor:

S.No NAME FUNCTION

1 VCC Connects supply voltage3.3V

2 GND Connected to ground (P 14)

3 D0 D0 pin GPIO 18 (P12)

4 A0 (No need) A0 pin to get analog output

Table.3: Configuration of the Rain sensor.

How to use Raindrop sensor:

Interfacing the raindrop sensor is simple. The rain board module is connected with the control

module of the raindrop sensor as shown in the below diagram.

Figure.5: The Rain Drop module.

The control module of the raindrop sensor has 4 outputs. VCC is connected to a 5V supply.

The GND pin of the module is connected to the ground. The D0 pin is connected to the digital

pin of the Raspberry Pi for digital output (or the analog pin can be used). The sensor module

consists of a potentiometer, LN393 comparator, LEDs, capacitors and resistors. The pinout

image above shows the components of the control module. The rainboard module consists of

copper tracks, which act as a variable resistor. Its resistance varies with respect to the wetness

on the rainboard.The below fig shows the rain board module.

Figure.6: The Rain board Sensor.

32

The circuit diagram of a raindrop sensor module is given below.

Figure.7: The circuit diagram of a raindrop sensor.

As shown in the above figure, the R1 resistor and the rain board module will act as a voltage

divider. Capacitors C1 and C2 are used as a biasing element. The input for the Non-inverting

terminal is taken from the connection point of the R1, and rain board module. Another point is

taken from this connection and connected to the A0 terminal of the control module.

The input to the inverting terminal of the LM393 is taken from the potentiometer (R2). The

R2 resistor acts as a voltage divider, and by varying R2 we can vary the input voltage to the

inverting terminal, which in turn affects the sensitivity of the control module. The

connections are shown in the above fig. The resistors R3 and R4 will act as current limiting

resistors, while resistor R5 will act as a pull-up resistor to keep the bus in a high state when

not in use.

Working of Rain Sensor:

Case1: When the input of the inverting terminal is higher than the input of the non-inverting

terminal.

Case2: If the input of the inverting terminal is lower than the input of the non-inverting

terminal.

33

The input to the inverting terminal is set to a certain value by varying the potentiometer and

the sensitivity is set. When the rain board module’s surface is exposed to rainwater, the

surface of the rainboard module will be wet, and it offers minimum resistance to the supply

voltage. Due to this, the minimum voltage will be appearing at the non-inverting terminal of

LM393 Op-Amp. The comparator compares both inverting and non-inverting terminal

voltages. If the condition falls under case(1), the output of the Op-Amp will be digital LOW.

If the condition falls under case(2), the output of the Op-Amp will be digital HIGH.

The below diagram shows the equivalent circuit of both the conditions.

Figure.8: The circuit diagram of a raindrop sensor.

When the A0 pin is connected to the microcontroller, an additional analog to digital converter

(ADC) circuit is used. In the case of Raspberry pi, it can be directly used for calculation

purposes.

34

2.3 Raspberry Pi

Figure.9: The Raspberry PI board.

Raspberry Pi board is one of the prevailing single-board computers specially designed for

open-source development. We selected Raspberry 3 to construct sensor node. Raspberry 3

typically consumes power less than 2 W when conducting scientific computing. With a

Broadcom BCM2836 system-on-chip (SoC), which consists of a 900 MHz quad-core ARM

Cortex-A7 CPU and 1 GB RAM, Raspberry Pi is capable of some complex operations. What

is more, Raspberry Pi has 4 USB ports, 40 GPIO pins, full HDMI port, ethernet port, display

interface (DSI), micro SD card slot, and 3D graphics core, which provide more possibilities

for its application.

As Figure -System Architecture- shows, all sensors are connected to Raspberry Pi through

different GPios to start sensing and getting data. Raspberry Pi receives the data and then sends

results to Firebase through Wi-Fi (wireless fidelity) communication module, for an eventuel

treatment, Cloud Firestore will receive data package in real-time.

Note : (SSH into Raspberry Pi)

To run commands on the Raspberry Pi without needing to plug in a display, keyboard, mouse

and having to move to the location of the Raspberry Pi each time, logging into the Pi via SSH

(Secure Shell) from any other computer, ofc after running Raspbian on the Pi and successfully

connect to a network via Ethernet or WiFi.

35

3. The Actuator

For event notification

An event notification system is also implemented with a LED, based on sensor measurements

and predefined If conditions. This makes it possible to supervise and monitor the data

recieved. When the server receives the weather data for each sensor through the Raspberry Pi,

the LED will turn on flash alerts.

 For example, it can send notification alert to user via push emails.

Figure.10: Connecting the LED with the circuit.

The LED has 2 legs. The longer leg, 'anode', is always connected to positive supply. The

shorter leg,'cathode', is always connected to ground.

Components: To connect the circuit:

1. Raspberry Pi

2. LED

3. Resistor - 330 ohm to limit the amount of current in the circuit. Without the resistor the

current flowing through the LED will be much larger and lead to a short damaging the circuit.

4. Breadboard

5. 2 Male-Female Jumper Wires

36

Connecting The Circuit :

Figure.11: The LED circuit.

 A jumper wire to connect the ground (Pin 34) of GPIO to rail marked in blue on

the breadboard.

 The resistor is connected from the same row on the breadboard to a column on the

breadboard.

 Connect the LED with the cathode in the same row as the resistor. Insert the anode

in the adjacent row.

 Another jumper cable to connect the GPIO Pin 21 (3.3 V) in the same row as the

anode of LED.

37

Experiment picture :

Figure.12: The Circuit.

38

4. Conclusion

This chapter provides details of the main parts of our system, which are low-cost sensors,

local computing platform based on Raspberry Pi, and some informations are introduced to

explore the internet of things and to see how the informations are collected from different

devices and sensors, the tracked data (the weather changes) and even examples to react with

the system.

39

CHAPTER THREE : THE SOFTWARE
DEVELOPMENT

40

1. Introduction

Different software products were developed for this experiment in order to establish the

sensor interface, configure the Pi and manage the sensed data for receiving, storing and

publishing it on the Cloud. Each development phase is described as follows.

41

2. Information Processing Software

The obtained sensors data are recieved by the Raspberry PI. The cloud firestore from Firebase

can get the sensor data stored on Raspberry Pi through its interaction with Raspberry Pi’s data

management system.

The sensors data exchanges between Raspberry Pi and the server « Firebase » which will be

discussed in later part. The sensor data are interpreted by Node Js that is installed on

Raspberry Pi. The data processing algorithm is the core of the whole software.

The programs is the test results of several algorithms and select the best fitting model

according to the accuracy and efficiency based on the system chosen.

Raspberry Pi sends the data of the weather through Wi-Fi, and the data will be updated by

Firebase periodically. The sensors data in certain period will be transmitted from Raspberry Pi

to Firebase through GPIO protocols.

Communication and Sensor Layers in Raspberry Pi

To successfully communicate with the sensor nodes from the Raspberry PI, communication

and sensor layers have been implemented on the RPI. The libraries in the communication

layer are used to establish a reliable connection between the sensor nodes and to communicate

with the server. The Node Js libraries are used to receive data on RPI.

The Raspberry Pi is connected to Firebase. Since Firebase already supports Node Js, we have

focused on implementing software to connect it.

When the Raspberry Pi is turned on, it first connects to Node Js using a static IP address.

Once the connection is successful, the Raspberry Pi requests for the data from the Sensors.

Upon successful reception of data, These data are then updated on the Firebase platform using

Cloud Firestore which is described in details later.

42

The layers of our software are shown in this Figure. From top to down :

Figure.13: Software Architecture.

Sensors

Raspberry
Pi

Node Js

Firebase

Web
Interface

43

Connecting Sensor Network to Cloud Service

As mentioned previously, the access to Cloud services has to be easy, direct, open and

interoperable. That is, the provided communication means and programming interfaces (APIs)

shall be easy to implement on every platform and developing environment. One of the most

open and interoperable ways to provide access to remote services or to enable applications to

communicate with each other is to utilize Firebase from Google Cloud services.

Firebase

Firebase is a flexible, scalable database for mobile, web, and server development from Google

Cloud Platform.

Cloud Firestore let us store the data in the cloud, so we can sync it across all our devices or

share them among multiple users. And it comes with all the conveniences we'd expect from a

Firebase product, like Libraries, full support for offline mode so the project will continue to

work just fine whether it’s connected or not even on the web, a comprehensive set of security

rules to help you manage access, and an easy-to-use data browsing tool. It also lets us

structure the data in ways that make sense to us. Cloud Firestore works in near real time,

automatically fetching changes from our database as they happen, or we can request and fetch

data manually. It's completely up to us.

Getting started with Firebase

Prerequisites

 Installing editor or IDE.

 Signing into Firebase using Google account.

Step 1: Creating a Firebase project

1. In the Firebase console, by clicking on Add project, then entering a Project name.

Firebase automatically assigns a unique ID to the Firebase project.

2. Continue.

3. Create project.

Firebase automatically provisions resources for the Firebase project. When the process

completes, it will be taken to the overview page for the Firebase project in the Firebase

console.

44

Relationship between Firebase projects and Google Cloud Platform (GCP)

When creating a new Firebase project in the Firebase console, it’s actually creating a Google

Cloud Platform (GCP) project behind the scenes. A GCP project as a virtual container for

data, code, configuration, and services. A Firebase project is a GCP project that has

additional Firebase-specific configurations and services.Since a Firebase project is a GCP

project:

 Projects that appear in the Firebase console also appear in the GCP console and

Google APIs console.

 Billing and permissions for projects are shared across Firebase and GCP.

 Unique identifiers for a project (like project ID) are shared across Firebase and GCP.

 It can use products and APIs from both Firebase and GCP in your project.

 Deleting a project deletes it across Firebase and GCP.

Setting up a Firebase project :

The project name : When creating a project, it provide a project name. This identifier is the

internal-only name for your project in the Firebase console, the GCP console, and the

Firebase CLI. The project name is not exposed in any publicly visible Firebase or GCP

product, service, or resource; it simply serves to help more easily distinguish the various

projects.

Note: The project ID is the truly unique identifier for the project across all of Firebase and

GCP.

The project ID :The Firebase project (and its associated GCP project) has a project ID

which is the globally unique identifier for your project across all of Firebase and GCP. When

creating a Firebase project, Firebase automatically assigns a unique ID to your project, but

you can edit it during setup.

Firebase resources and the project ID : The project ID displays in publicly visible Firebase

resources, for example:

 Default Hosting subdomain — projectID.web.app and projectID.firebaseapp.com

 Default Realtime Database URL — projectID.firebaseio.com

 Default Cloud Storage bucket name — projectID.appspot.com

For all of the aforementioned resources, it can create non-default instances. The publicly

visible names of non-defaults are fully-customizable. And can connect custom domains to the

Firebase-hosted site, shard the Realtime Database, and create multiple Cloud Storage buckets.

After Firebase provisions resources for the Firebase project, the project ID cannot be changed.

To use a specific identifier for the Firebase resources, it must edit the project ID during the

initial creation of the project.

https://firebase.google.com/docs/projects/learn-more?authuser=0#project-id

45

Managing a Firebase project

Firebase console

The Firebase console offers the richest environment for managing Firebase project-level

settings.

Figure.14: Firebase console

The left-side panel of the console lists the Firebase products, organized by top-level

categories. At the top of the left-side panel, access the project settings by clicking settings

(settings include integrations, access permissions, and billing).

The middle of the console displays buttons that launch setup workflows to add various types

of apps. After you start using Firebase, the main area of the console changes into a dashboard

that displays stats on the products you use.

46

Tools to manage the project Html, css, javascript & Node Js

HyperText Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript are the

languages that run the web. They’re very closely related, but they’re also designed for very

specific tasks. Node allows to use the same programming language Js on both the front and

back-end sides.

 HTML is for adding meaning to raw content by marking it up.

 CSS is for formatting that marked up content.

 JavaScript is for making that content and formatting interactive.

The HTML is the abstract text and images behind the web page, CSS is the page that actually

gets displayed, and JavaScript is the behaviors that can manipulate both HTML and CSS.

Node is growing so popular: it allows to use the same programming language on both the

front and back-end sides.

And of course Firebase for HOSTING and REALTIME database.

Note : Mastering HTML, CSS, and JavaScript basics is a prerequisite.

For example, some particular run of text as a title with this HTML:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1" />

 <title>WELCOME TO MY WEATHER APP</title>

</head>

Then, the size and color can be set with some CSS:

.navbar__title {

 color: #ffffff;

 font-size: 24px;

 font-weight: bold;

 }

47

Adding Firebase to JavaScript app

1. In the center of the Firebase console's project overview page, the Web icon (plat_web) launch

the setup workflow.

2. Enter the app nickname, it is an internal, convenience identifier and is only visible in the

Firebase console.

3. (Optional) Set up Firebase Hosting for the web app.

 Firebase Hosting can be set at any time in the Project settings.

 To set up Hosting up now, select a site from the dropdown list to link to Firebase Web App.

 This list displays the project's default Hosting site and any other sites that have been set up in

the project.

 Any site that is already linked to a Firebase Web App is unavailable for additional linking.

Each Hosting site can only be linked to a single Firebase Web App.

Adding Firebase SDKs and initializing Firebase

Adding Firebase SDKs to the app depends on whether what is chosen to use Firebase Hosting

for the app, what tooling are using with the app (like a bundler), or if are configuring a

Node.js app.

Caution: The following instructions are for using the Firebase JavaScript SDK as a client for

end-user access (for example, in a Node.js desktop or IoT application).

1. Install the Firebase JavaScript SDK:

a. Creat a package.json file, by running the following command from the root of JavaScript

project:

npm init

b. Install the firebase npm package and save it to your package.json file by running:

npm install --save firebase

2. Use one of the following options to use the Firebase module in your app:

 Require modules from any JavaScript file

To include only specific Firebase products (like Authentication and Cloud Firestore):

// Firebase App (the core Firebase SDK) is always required and

// must be listed before other Firebase SDKs

var firebase = require("firebase/app");

// Add the Firebase products that you want to use

require("firebase/auth");

require("firebase/firestore");

Include the entire Firebase JavaScript SDK, rather than individual SDKs (not recommended

for production apps)

48

 ES2015 to import modules

To include only specific Firebase products (like Authentication and Cloud Firestore):

// Firebase App (the core Firebase SDK) is always required and

// must be listed before other Firebase SDKs

import * as firebase from "firebase/app";

// Add the Firebase services that you want to use

import "firebase/auth";

import "firebase/firestore";

Include the entire Firebase JavaScript SDK, rather than individual SDKs (not recommended

for production apps)

 Initialize Firebase in the app:

// TODO: Replace the following with your app's Firebase project configuration

// For Firebase JavaScript SDK v7.20.0 and later, `measurementId` is an optional field

var firebaseConfig = {

 // ...

};

// Initialize Firebase

firebase.initializeApp(firebaseConfig);

Learning about the Firebase config object

To initialize Firebase in your app, it needs to provide the app's Firebase project configuration.

 Manually editing the config object is not recommend, especially the following required

"Firebase options": apiKey, projectId, and appID. If you initialize your app with invalid or

missing values for these required "Firebase options", users of your app may experience

serious issues.

Here's the format of a config object with all services enabled (these values are automatically

populated):

// For Firebase JavaScript SDK v7.20.0 and later, `measurementId` is an optional field

var firebaseConfig = {

 apiKey: "API_KEY",

 authDomain: "PROJECT_ID.firebaseapp.com",

 databaseURL: "https://PROJECT_ID.firebaseio.com",

 projectId: "PROJECT_ID",

 storageBucket: "PROJECT_ID.appspot.com",

 messagingSenderId: "SENDER_ID",

 appId: "APP_ID",

 measurementId: "G-MEASUREMENT_ID",

};

https://firebase.google.com/docs/web/setup?authuser=0#config-object

49

Here's a config object with values:

// For Firebase JavaScript SDK v7.20.0 and later, `measurementId` is an optional field

var firebaseConfig = {

 apiKey: "AIzaSyDOCAbC123dEf456GhI789jKl01-MnO",

 authDomain: "myapp-project-123.firebaseapp.com",

 databaseURL: "https://myapp-project-123.firebaseio.com",

 projectId: "mydht22",

 storageBucket: "myapp-project-123.appspot.com",

 messagingSenderId: "65211879809",

 appId: "1:65211879909:web:3ae38ef1cdcb2e01fe5f0c",

 measurementId: "G-8GSGZQ44ST"

};

(Optional) Installing CLI and deploying to Firebase Hosting

To deploy to Firebase, you'll use the Firebase CLI, a command-line tool.

1. Run the following command from the root of the local app directory:

firebase init

What does this initialization command do?

2. Deploy your content and hosting configuration to Firebase Hosting. By default, every

Firebase project has free subdomains on the web.app and firebaseapp.com domains (project-

id.web.app and project-id.firebaseapp.com).

a. Deploy the site. Run the following command from the app's root directory:

firebase deploy

b. View the site at either of default sites:

 project-id.web.app

 project-id.firebaseapp.com

1. Add a defer flag to each script tag for the Firebase SDKs, then defer the initialization of

Firebase using a second script, for example:

<script defer src="https://www.gstatic.com/firebasejs/7.21.1/firebase-app.js"></script>

<script defer src="https://www.gstatic.com/firebasejs/7.21.1/firebase-auth.js"></script>

<script defer src="https://www.gstatic.com/firebasejs/7.21.1/firebase-firestore.js"></script>

// ...

<script defer src="./init-firebase.js"></script>

50

2. Create an init-firebase.js file, then include the following in the file:

// TODO: Replace the following with your app's Firebase project configuration

var firebaseConfig = {

 // ...

};

// Initialize Firebase

firebase.initializeApp(firebaseConfig);

Run a local web server for development

Some parts of the Firebase JavaScript SDK require that you serve your web app from a server

rather than from the local filesystem. use the Firebase CLI to run a local server.

To serve your web app, use the Firebase CLI, a command-line tool.

1. Initialize Firebase project. Run the following command from the root of local app directory:

firebase init

What does this initialization command do?

2. Start the local server for development. Run the following command from the root of local app

directory:

firebase serve

HTML, CSS, and JavaScript are totally different languages, but they all refer to one another in

some way. The app rely on all three, but the appearance of every website is determined by

HTML and CSS.

51

3. Implementation Results and Discussion

Figure.15: The Firebase project

Figure.16: The application interface.

52

Figure.16: The application interface.

In order to evaluate and demonstrate the proposed model, we implement it by using the

technical approach which is described in the above chapters. A WSN was created to collect

temperature, humidity and rain drop readings and to connect the Sensor Network to the Cloud

Services. Preliminary experiments were performed to evaluate the system in terms of sensor

data accessibility and alert notification. Furthermore, a Web and mobile Application was

created on Firebase from Google Cloud Platform to present the collected data in an easy and

meaningful way.

Limitations of the Study

This study raised a number of issues and questions that may provide a basis for future

research. This is partly due to some limitations identified in this study and partly because of

issues and concerns that rose in the analysis and could not be pursued as part of this inquiry.

Thus, a brief reference to the limitations will be presented.

This is a short term study conducted over a space of one semester. As it was not a longitudinal

study and did not allow the research to deal with more sensors, any conclusions established do

not provide a full picture of the effects of the Competency-Based Approach.

53

4. Conclusion

The system has been working perfectly so far. All sensor data and results conducted in

Raspberry Pi present enormous significance on Firebase in an easy and meaningful way,

especially in exploring local meteorological differences, Temperature, humidity and warning

of heavy rain.

54

CONCLUSIONS

The IoT, i.e. the capability to interconnect every possible device, opens new scenarios in

WSNs. Cloud computing services and the availability of powerful and inexpensive smart

devices allow to optimize information management, sharing measurement results and

improving quality of services.

In addition, smartdevice sensing capabilities are improving, and the development of these

wireless sensor networks requires technologies from three very different research areas, i.e.

technologies related to the development of the sensor, of the communication device, and of

computing device (not limited to the hardware, but also including software and algorithms).

Combined and separate advancements in each of these areas have driven research in this field.

This work proposed a flexible architecture for integration of Wireless Sensor Networks to the

Cloud for sensor data collection and sharing using Firebase from Google Cloud services.

Accurate and in-time weather data is a core challenge in environmental sensor networks. we

developed a Raspberry Pi based intelligent wireless sensor node that can self-collect

environmental data and publish forecast in the cloud using Wi-Fi.

The designed system can be directly integrated into other applications, to avoid loss of data

and we embedded intelligence at different architectural layers to accommodate for the diverse

requirements of possible application scenarios with minimum redesign and recoding. The

evaluation results illustrate that the sensor data can be accessed by the users anywhere and on

any mobile device with internet access.

55

 ملخــــــــــــص

 cloud اىـرزٞر خذٍبد. WSNإّزشّذ الأشٞبء ، أٛ اىقذسح عيٚ سثظ مو خٖبص ٍَنِ ، ٝفزر عْٞبسٕٝ٘بد خذٝذح فٜ شجنبد

 ٗر٘افش الأخٖضح اىزمٞخ اىق٘ٝخ ٗغٞش اىَنيفخ رسغِٞ إداسح اىَعيٍ٘بد ٍٗشبسمخ ّزبئح اىقٞبط ٗرسغِٞ ،ىس٘عجخ اىغسبثٞخا

 .خ٘دح اىخذٍبد

ثبلإضبفخ إىٚ رىل ، رزسغِ قذساد اعزشعبس الأخٖضح اىزمٞخ ، ٗٝزطيت رط٘ٝش شجنبد الاعزشعبس اىلاعينٞخ ٕزٓ رقْٞبد ٍِ

لا ٝقزصش عيٚ) اىزقْٞبد اىَزعيقخ ثزط٘ٝش اىَغزشعش ٗخٖبص الارصبه ٗخٖبص اىس٘عجخ ٍثوثلاثخ ٍدبلاد ثسث ٍخزيفخ،

دفعذ اىزط٘ساد اىَشزشمخ ٗاىَْفصيخ فٜ مو ٍِ ٕزٓ اىَدبلاد . (الأخٖضح ، ٗىنِ أٝضًب ثَب فٜ رىل اىجشاٍح ٗاىخ٘اسصٍٞبد

 .اىجسث فٜ ٕزا اىَدبه

 ٍِ Firebaseاقزشذ ٕزا اىعَو ثْٞخ ٍشّخ ىذٍح شجنبد الاعزشعبس فٜ اىغسبثخ ىدَع ثٞبّبد اىَغزشعش ٍٗشبسمزٖب ثبعزخذاً

 .Google Cloudخذٍبد

قَْب ثزط٘ٝش عقذح زغبط رمٞخ . رَثو ثٞبّبد اىطقظ اىذقٞقخ ٗفٜ اى٘قذ اىَْبعت رسذًٝب أعبعًٞب فٜ شجنبد الاعزشعبس اىجٞئٞخ

 . فٜ اىغسبثخسٕب َٝنْٖب خَع اىجٞبّبد اىجٞئٞخ ّٗشRaspberry Piقبئَخ عيٚ

فٜ صٌَٞ اىَْ٘رج قَْب ثذار اىجٞبّبد، ىزدْت فقذاُ الأخشٙ، اىزطجٞقبد اىعذٝذ ٍَِٝنِ دٍح اىْظبً اىَصٌَ ٍجبششح فٜ

طجقبد ٍخزيفخ لاعزٞعبة اىَزطيجبد اىَزْ٘عخ ىغْٞبسٕٝ٘بد اىزطجٞق اىََنْخ ٍع اىسذ الأدّٚ ٍِ إعبدح اىزصٌَٞ ٗإعبدح

 ٗعيٚ فٜ أٛ ٗقذر٘ضر ّزبئح اىزقٌٞٞ أّٔ َٝنِ اى٘ص٘ه إىٚ ثٞبّبد اىَغزشعش ٍِ قجو اىَغزخذٍِٞ فٜ أٛ ٍنبُ. اىزشٍٞض

 .أٛ خٖبص ٍسَ٘ه ٍزصو ثبلإّزشّذ

56

References

[1] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, et al., "ALARM-NET:

Wireless sensor networks for assisted-living and residential monitoring,"

University of Virginia Computer Science Department Technical Report, 2006.

[2] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, "Codeblue: An ad hoc

sensor network infrastructure for emergency medical care," in International

workshop on wearable and implantable body sensor networks, 2004.

[3] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, et al.,

"Deploying a wireless sensor network on an active volcano," Internet

Computing, IEEE, vol. 10, pp. 18-25, 2006.

[4] J. Tooker, X. Dong, M. C. Vuran, and S. Irmak, "Connecting soil to the cloud: A

wireless underground sensor network testbed," in Sensor, Mesh and Ad Hoc

Communications and Networks (SECON), 2012 9th Annual IEEE

Communications Society Conference on, 2012, pp. 79-81.

[5] F. Kausar, E. Al Eisa, and I. Bakhsh, "Intelligent Home Monitoring Using RSSI

in Wireless Sensor Networks," International Journal of Computer Networks &

Communications (IJCNC), vol. 4, pp. 33-46, 2012.

[6] H. ElAarag, D. Bauschlicher, and S. Bauschlicher, "System Architecture of

HatterHealthConnect: An Integration of Body Sensor Networks and Social

Networks to Improve Health Awareness," International Journal of Computer

Networks & Communications, vol. 5, p. 22, 2013.

[7] P. A. C. d. S. Neves and J. J. P. C. Rodrigues, "Internet Protocol over Wireless

Sensor Networks, from Myth to Reality," JOURNAL OF

COMMUNICATIONS, vol. 5, pp. 189-195, 2010.

[8] M. R. Kosanović and M. K. Stojčev, "CONNECTING WIRELESS SENSOR

NETWORKS TO INTERNET," FACTA UNIVERSITATIS, Mechanical

Engineering, vol. 9, pp. 169-182, 2011.

[9] A. E. Kouche, "Towards a wireless sensor network platform for the Internet of

Things: Sprouts WSN platform," in Communications (ICC), 2012 IEEE

International Conference on,, 2012, pp. 632-636.

57

[10] B. Li and J. Yu, "Research and Application on the Smart Home Based on

Component Technologies and Internet of Things," Procedia Engineering, vol.

15, pp. 2087-2092, // 2011.

[11] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi, "Combining Cloud

and sensors in a smart city environment," EURASIP Journal on Wireless

Communications and Networking, vol. 2012, p. 247, 2012.

[12] D. Guinard and V. Trifa, "Towards the web of things: Web mashups for

embedded devices," in Workshop on Mashups, Enterprise Mashups and

Lightweight Composition on the Web (MEM 2009), in proceedings of WWW

(International World Wide Web Conferences), Madrid, Spain, 2009.

[13] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, "Tiny web services:

design and implementation of interoperable and evolvable sensor networks," in

Proceedings of the 6th ACM conference on Embedded network sensor systems,

2008, pp. 253-2

[14] Liu, Y.; Hu, L.; Yang, D.; Liu, H. Air-Sense: Indoor environment monitoring

evaluation system based on ZigBee network. IOP Conf. Ser. Earth Environ. Sci.

2017, 81, 12208.

[15] Yang, J.; Zhou, J.; Lv, Z.; Wei, W.; Song, H. A Real-Time Monitoring System

of Industry Carbon Monoxide Based on Wireless Sensor Networks. Sensors

2015, 15, 29535–29546. [CrossRef]

[16] Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud

computing and Internet of Things: A survey. Futur. Gener. Comput. Syst. 2016,

56, 684–700. [CrossRef]

[17] Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in

the integration of Internet of things and cloud computing. J. Netw. Comput.

Appl. 2016, 67, 99–117. [CrossRef]

[18] Kumar, P.M.; Lokesh, S.; Varatharajan, R.; Gokulnath, C.; Parthasarathy, P.

Cloud and IoT based disease prediction and diagnosis system for healthcare

using Fuzzy neural classifier. Futur. Gener. Comput. Syst. 2018. [CrossRef]

58

[19] Gachet, D.; De Buenaga, M.; Aparicio, F.; Padron, V. Integrating internet of

things and cloud computing for health services provisioning: The virtual cloud

carer project. In Proceedings of the 2012 Sixth International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo,

Italy, 4–6 July 2012; pp. 918–921.

[20] Ray, P.P. A survey of IoT cloud platforms. Futur. Comput. Informat. J. 2016, 1,

35–46.[CrossRef]

[21] OpenIoT Web Page. Available online: http://www.openiot.eu/

[22] xively Web Page. Available online: https://xively.com/

[23] ThingSpeak Web Page. Available online: https://thingspeak.com/

[24] CloudPlugs Web Page. Available online: https://cloudplugs.com/

[25] Device Cloud Web Page. Available online: https://devicecloud.digi.com

[26] Thinking Things Web Page. Available online https://iot.telefonica.com/thinking-

things

[27] SensorCloud Web Page. Available online:http://www.sensorcloud.com/

[28] Amazon Web Services Web Page. Available online: https://aws.amazon.com/

[29] Google Cloud Platform. Available online:https://cloud.google.com

[30] Aleixandre, M.; Gerboles, M. Review of small commercial sensors for indicative

monitoring of ambient gas.Chem. Eng. Trans. 2012, 30, 169–174. [CrossRef]

[31] Lewis, A.C.; Lee, J.; Edwards, P.M.; Shaw, M.D.; Evans, M.J.; Moller, S.J.;

Smith, K.; Ellis, M.; Gillott, S.;White, A.; et al. Evaluating the performance of

low cost chemical sensors for air pollution research. FaradayDiscuss. 2016, 189,

85–103. [CrossRef] [PubMed]

[32] Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.;

Dick, R.P.; Lv, Q.; Hannigan, M.;et al. The next generation of low-cost personal

air quality sensors for quantitative exposure monitoring.Atmos. Meas. Tech.

2014, 7, 3325–3336. [CrossRef]

[33] [8] M. Yuriyama, T. Kushida, and M. Itakura, ―A new model of accelerating service

innovation with sensor-cloud infrastructure,‖ in Proceedings of the annual SRII Global

Conference (SRII’11), pp. 308–314, 2011.

59

[34] [9] J. Yick, B. Mukherjee, and D. Ghosal, Wireless Sensor NetworkSurvey, Elsevier,

2008.

[35] [10] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, A Survey of Mobile Cloud

Computing: Architecture, Applications, and Approaches, Wireless Communications

and Mobile Computing-Wiley Online Library, 2011.

[36] [11] W. Kim, ―Cloud computing: today and tomorrow,‖ Journal of Object

Technology, vol. 8, pp. 65–72, 2009.

[37] [12] M. Yuriyama and T. Kushida, ―Sensor-cloud infrastructure physical sensor

management with virtualized sensors on cloud computing,‖ in Proceedings of the

IEEE 13th International Conference on Network-Based Information Systems (NBiS

’10), pp. 1–8, September 2010.

[38] Nimbits Data Logging Cloud Sever, http://www.nimbits.com.

[39] Pachube Feed Cloud Service, http://www.pachube.com.

[40] iDigi—Device Cloud, http://www.idigi.com.

[41] C. Doukas and I. Maglogiannis, ―Managing wearable sensor data through cloud

computing,‖ in Proceedings of the IEEE 3rd International Conference on Cloud

Computing, 2011.

[42] G. Demiris, B. K. Hensel, M. Skubic, and M. Rantz, ―Senior residents’ perceived need

of and preferences for ―smart home‖ sensor technologies,‖ International Journal of

Technology Assessment in Health Care, vol. 24, no. 1, pp. 120–124, 2008.

[43] K. Lee, D. Murray, D. Hughes, and W. Joosen, ―Extending sensor networks into the

Cloud using Amazon web services,‖ in Proceedings of the 1st IEEE International

Conference on Networked Embedded Systems for Enterprise Applications (NESEA

’10), pp. 1–7, November 2010.

[44] B. Jit, J. Maniyeri, S. Louis, K. Gopalakrishnan, and P. Yap, ―Design and trial

deployment of a practical sleep activity pattern monitoring system,‖ in Proceedings of

the International Conference on Smart Homes and Health Telematics (ICOST ’09),

Tours, France, June 2009.

[45] B. Jit, J. Maniyeri, S. Louis, and L. K. P. Yap, ―Fast matching of sensor data with

manual observations,‖ in Proceedings of the 31st Annual International Conference of

the IEEE Engineering in Medicine and Biology Society: Engineering the Future of

Biomedicine (EMBC ’09), pp. 1675–1678, September 2009.

60

[46] N. Kurata, M. Suzuki, S. Saruwatari, and H. Morikawa, ―Actual application of

ubiquitous structural monitoring system using wireless sensor networks,‖ in

Proceedings of the 14th World Conference on Earthquake Engineering (WCEE ’08),

2008.

[47] Google Health, http://www.google.com/health.

[48] Korea u-Life care system.

[49] http://www.apan.net/meetings/HongKong2011/Session/Agriculture.php/.

[50] H. H. Tran and K. J. Wong, ―Mesh networking for seismic monitoring—the sumatran

cGPS array case study,‖ in Proceedings of the IEEE Wireless Communications and

Networking Conference (WCNC ’09), April 2009.

[51] Tunnel Monitoring System: http://www.advantech.com/intelligent-

automation/Industry%20Focus/%7BC274D52C-95- D2-499E-9E16-6C1F41D1CD6/.

61

